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Abstract

A theoretical model is developed for the dynamics of a hanging tubular cantilever conveying fluid downwards; the

fluid, after exiting from the free end, is pushed upwards in the outer annular region contained by the cantilever and a

rigid cylindrical channel. This configuration thus resembles that of a drill-string with a floating fluid-powered drill-bit.

The linear equation of motion is solved by means of a hybrid Galerkin–Fourier method, as well as by a conventional

Galerkin method. Calculations are conducted for a very slender system with parameters appropriate for a drill-string,

for different degrees of confinement of the outer annular channel; and also for another, bench-top-size experiment. For

wide annuli, the dynamics is dominated by the internal flow and, for low flow velocities, the flow increases the damping

associated with the presence of the annular fluid. For narrow annuli, however, the annular flow is dominant, tending to

destabilize the system, giving rise to flutter at remarkably low flow velocities. The mechanisms underlying the dynamics

are also considered, in terms of energy transfer from the fluid to the cantilever and vice versa, as are possible

applications of this work.

r 2007 Published by Elsevier Ltd.
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1. Introduction

An alternative title of this paper might have been ‘‘The dynamics of an idealized flow-powered drill-string with a

floating drill-bit’’, since that system motivated this study. Fig. 1 shows the idealized system, consisting of a hollow drill-

rod and a floating drill-bit, i.e. one that is not mechanically attached to the drill-rod. Sludge, pumped down within the

hollow rod, rotates the drill-bit as a turbine, thus drilling into the rock. The sludge together with the debris flows

upwards around the drill rod to the surface. This system was granted a fallacious patent, as charmingly related by Den

Hartog (1969), by claiming that, as there would be no compressive force in the drill-string as in traditional drilling, this

system would not buckle under normal operating conditions; in a traditional rotating drill-string a great deal of energy
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Fig. 2. The system under consideration, showing a long vertical tubular cantilever conveying fluid downwards; the fluid is then pushed

upwards in the outer annular region contained by a rigid channel.

Fig. 1. Diagram of the drill-string and floating drill bit, rotating under the action of the flow (Den Hartog, 1969).
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is lost by rubbing of the buckled string against the surrounding rock. In fact, this system also buckles, not as a result of

axial compression, but by the effect of internal pressurization, as also discussed in Paı̈doussis (1998).

The system under consideration in this paper is a further idealization of the foregoing, essentially by ignoring the

drill-bit altogether. So, this is no longer a realistic model for a drilling system; or it could be considered to be one relying

wholly on erosion. Thus, we have a long tubular cantilever internally conveying fluid downwards; the fluid, after

emerging from the free end, reverses direction and flows upwards in the annular region formed by the cantilever and an

outer rigid channel, as shown diagrammatically in Fig. 2. Therefore, the study in this paper may be considered to be a

fundamental investigation of the system of Fig. 2, inspired by drilling applications.

The problem of a cylindrical cantilever subjected concurrently to internal and external flows has been studied before,

by Cesari and Curioni (1971), Hannoyer and Paı̈doussis (1978), Grigoriev (1978), Paı̈doussis and Besanc-on (1981), Luu

(1983) and Wang and Bloom (1999). Of particular interest is Hannoyer and Paı̈doussis’s (1978) study, combining theory

and experiments on the linear dynamics and stability of a cylinder with supported ends or cantilevered, subject to both

internal and external axial flows; a rich dynamical behaviour was revealed, involving multiple divergence and flutter

instabilities. Theory and experiments were in quite good agreement.

Luu’s (1983) thesis is the basis of the present paper. It differs from the work just cited in two significant ways: first, the

two flows are countercurrent, and second they are not independent of each other. This work remained unpublished, until

recent developments, briefly discussed below, provided a new impetus to sharing it with the wider research community.



ARTICLE IN PRESS
M.P. Paı̈doussis et al. / Journal of Fluids and Structures 24 (2008) 111–128 113
The first element in this new impetus is related to the dynamics of aspirating pipes, of the type used, for instance, for

ocean mining (Chung et al., 1981; Deepak et al., 2001). The see-saw path to understanding the dynamics of this system

is related in Paı̈doussis et al. (2005). The system was originally thought to be subject to flutter at very small flow

velocities—infinitesimally small in the absence of dissipation (Paı̈doussis and Luu, 1985). This was revised to suggest

that the system is totally immune to instability (Paı̈doussis, 1998, 1999), and the problem was linked to Feynman’s

quandary on the sense of rotation of a hypothetical aspirating rotary sprinkler (Gleick, 1992); refer also to Pramila

(1992). Doubts on the validity of the proof provided in Paı̈doussis (1999) were voiced by Kuiper and Metrikine (2005),

suggesting that flutter is indeed possible. This forced a reevaluation of the problem in Paı̈doussis et al. (2005), modifying

Kuiper and Metrikine’s analysis, but nevertheless concluding that flutter may indeed be possible, the final answer

depending on careful evaluation of the flow field close to the inlet, currently under CFD study. This brief account is

perhaps too condensed for an interested but uninitiated reader to grasp fully; reference should be made to Paı̈doussis et

al. (2005) and Paı̈doussis (2005) for a detailed discussion of the evaluation of understanding of this intriguing problem,

and also to Kuiper and Metrikine (2006, 2008) for some new but perplexing experiments. In parallel, considerable work

has been done on Feynman’s ‘‘reverse sprinkler’’, the dynamics of which is fundamentally similar to that of the

aspirating pipe; see, e.g., Forrester (1986), Hsu (1988), Berg and Collier (1989) and Creutz (2005).

For the system of Fig. 2, the cantilever is not aspirating, but it is nevertheless subjected to ‘‘reverse’’ external flow, i.e.

from the free end towards the fixed one. Bearing in mind the similarities between the dynamics of cylinders subjected to

internal and external axial flows (Paı̈doussis, 2004), it is indeed of interest to study the dynamics of a system subjected to

‘‘reverse’’ external flow, which corresponds to aspirating internal flow.

The second impetus comes from MEMS/nanotechnology, specifically the use of microcantilevers and microchannels

for atomic force microscopy (AFM) and biomolecular detection [see, e.g., Putman et al., 1994; Burg and Manalis, 2003;

Fukuma et al., 2005; Basak et al., 2006], in which it is important to devise cantilevers immersed in viscous fluid but

nevertheless exhibiting very small damping. Clearly, that can be achieved for a cantilever subject to a flow-induced Hopf

bifurcation at flow rates inferior but close to the critical value. This will be explored specifically and more fully in

another paper, but it has nevertheless served to revitalize interest in the topic of this paper.

The present paper undertakes the first, linear study of the idealized system shown in Fig. 2. In keeping with the

problem which inspired this study in the first place, the system considered resembles that of a drill-string, namely it is

vertical and long and hence quite pliable. However, qualitatively the dynamics is the same for shorter cantilevers, as will

be demonstrated by sample calculations for a bench-top-size system.
2. Derivation of the equation of motion

The system under consideration consists of a uniform tubular cantilever beam of length L, external cross-sectional area

Ao, mass per unit length Mt and flexural rigidity EI, conveying downwards incompressible fluid of mass per unit length

Mf , flowing axially with velocity Ui. The fluid leaving the free end of the tubular beam is then pushed upwards with

velocity Uo within an outer rigid channel. The internal and external cross-sectional flow areas are Af and Ach, respectively;

the fluid pressures, measured above the atmospheric, are pi and po, respectively, for the inside and outside flow regions.

The internal and external flow velocities, Ui and Uo, respectively, are therefore related to each other; their specific relation

will be expressed later on. The tube axis in its undeformed (equilibrium) state coincides with the x-axis (Fig. 2).

Consider a small element of the tubular beam, of length dx, as shown in Fig. 3, under the action of structural and

fluid-related forces and moments. Force balances in the x- and z-directions give

qT

qx
�

q
qx

Q
qw

qx

� �
þMt gþ Fit � Fet � ðFin þ FenÞ

qw

qx
¼ 0 (1)

and

qQ

qx
þ

q
qx

T
qw

qx

� �
þ Fin þ Fen þ ðFit � FetÞ

qw

qx
�Mt

q2w

qt2
¼ 0, (2)

where Q is the transverse shear force in the tubular beam, T is the axial tension, Fin; Fit are, respectively, the normal

and tangential hydrodynamic forces due to the internal flow, Fen; Fet are, respectively, the normal and tangential

hydrodynamic forces due to the external flow, and w is the lateral deflection.

From Euler–Bernoulli beam theory, one has

Q ¼ �
q
qx

EI
q2w

qx2

� �
. (3)
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Fig. 4. (a) Forces acting on an element dx of the internally flowing fluid. (b) Forces due to the outside flow acting on the external

surface of an element dx of the tubular cantilever.

Fig. 3. Forces and moments acting on an element dx of the tubular cantilever.
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Substituting relation (3) into Eqs. (1) and (2), and neglecting second-order terms, gives

qT

qx
þ Fit � Fin

qw

qx
� Fet � Fen

qw

qx
þMt g ¼ 0 (4)

and

EI
q4w

qx4
�

q
qx

T
qw

qx

� �
� Fin � Fit

qw

qx
� Fen þ Fet

qw

qx
þMt

q2w

qt2
¼ 0. (5)

2.1. Hydrodynamic forces F in and Fit due to the internal flow

Consider the forces acting on an element of the fluid enclosed within the tube element of Fig. 3, as shown in Fig. 4(a).

The rate of change of fluid momentum per unit length is Mf ½ðq=qtÞ þUiðq=qxÞ�2w and zero in z- and x-directions,

respectively (Gregory and Paı̈doussis, 1966a; Paı̈doussis, 1998, Section 3.3.2). Therefore, force balances in the x- and

z-directions give, respectively,

Fit � Fin
qw

qx
¼Mf g� Af

qpi

qx
(6)

and

�Fin � Fit
qw

qx
¼Mf

q2w

qt2
þ 2Ui

q2w

qx qt
þU2

i

q2w

qx2

� �
þ Af

q
qx

pi

qw

qx

� �
. (7)

2.2. Hydrodynamic forces Fen;Fet due to the external flow

As shown in Fig. 4(b), the hydrodynamic forces Fen and Fet due to the external (annular) flow consist of
(i)
 FA, the lateral inviscid hydrodynamic force,
(ii)
 Fpx;Fpz, the forces due to the outside mean pressure and gravity, and
(iii)
 FN ;FL, the frictional viscous forces.
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These will be discussed separately in what follows.
2.2.1. The inviscid hydrodynamic force

As shown by Hannoyer and Paı̈doussis (1978)—see also Paı̈doussis (2004)—the lateral inviscid hydrodynamic force

per unit length has the form

FA ¼ w
q
qt
�Uo

q
qx

� �
rf Ao

qw

qt
�Uo

qw

qx

� �� �
, (8)

where wrf Ao is the added (hydrodynamic) mass per unit length for the annular flow in this work, rf Ao being the

displaced mass of fluid per unit length, and

w ¼
ðDch=DoÞ

2
þ 1

ðDch=DoÞ
2
� 1

, (9)

where Do is the outer diameter of the pipe and Dch the inner diameter of the channel (Fig. 2); so that w41.

2.2.2. The forces Fpx and Fpz due to the mean pressure and gravity

Assuming that the outer pressure (in the annulus) po varies with x linearly, hydrostatically as well as because of

frictional pressure losses, one can find (Hannoyer and Paı̈doussis, 1978; Paı̈doussis, 2004)

Fpx ¼ �
q
qx
ðAopoÞ þ Ao

qpo

qx
, ð10Þ

Fpz ¼ Ao
q
qx

po

qw

qx

� �
. ð11Þ

Here, Fpx ¼ 0 since dAo=dx ¼ 0; but Fpx is kept in this form for convenience.

The outside mean pressure po may now be obtained by considering a force balance of the flow in the annular region

(Fig. 5) of length Dx:

�Ach
dpo

dx
Dxþ Ff Dxþ Achrf gDx ¼ 0, (12)

where po has been assumed to be uniform across the cross-sectional area Ach ¼
1
4
pðD2

ch �D2
oÞ, and Ff , the total

frictional force, is

Ff ¼ FL
Stot

So

� �
, (13)

in which FL is the longitudinal frictional viscous force per unit length, to be discussed in the next section, Stot �

pDch þ pDo is the total wetted area per unit length, and So the outside wetted area per unit length of the tube.
Fig. 5. Forces acting on an element dx of the annular flow contained by the tubular cantilever on the one side and the rigid channel on

the other.
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Combining Eqs. (12) and (13) and integrating the resultant equation with respect to x gives

Aopo ¼ Aorf gþ FL
Do

Dh

� �
x, (14)

where the exit pressure at surface level ðx ¼ 0Þ is assumed to be zero, and Dhð� 4Ach=StotÞ is the hydraulic diameter of

the annular channel flow.
2.2.3. Frictional viscous forces FN ;FL and dissipation in the tubular beam

Using the expressions proposed by Taylor (Taylor, 1952) in their modified form (Paı̈doussis, 1973, 2004), the

frictional viscous forces in the normal and tangential directions are given by1

FN ¼
1

2
Cf rf DoUo

qw

qt
�Uo

qw

qx

� �
þ k

qw

qt
,

FL ¼
1
2
Cf rf DoU2

o, ð15Þ

where Cf and k are the viscous damping coefficients. It is realized that the superposition in FN of the viscous forces

associated with (i) the mean axial flow and (ii) a quiescent fluid is an approximation—likely resulting in an

overestimation of the actual viscous force. The alternative is a full viscous flow calculation, not a trivial task and one

not deemed to be justified for the purposes of this paper. In any case, the approach adopted here has been shown to

yield results in reasonable agreement with experiment for similar physical situations (Paı̈doussis, 2004).

The following expression is used for the viscous damping coefficient k:

k ¼
2
ffiffiffi
2
pffiffiffiffi

S
p

1þ g3

ð1� g2Þ2
rf AoO, (16)

where S ¼ O r2o=n is the Stokes number, O being the circular frequency of oscillation, ro ¼
1
2

Do, and n the kinematic

viscosity of the fluid; g ¼ Do=Dch, with Do and Dch as defined in Fig. 2 (Sinyavskii et al., 1980; Paı̈doussis, 1998). For

g! 0, this expression is identical to that derived in different ways by Batchelor (1967) and Chen (1981), valid for

unconfined flow.2 Eq. (16) is valid for Sb1, and it has been confirmed to give results in good agreement with the fuller

analysis of Chen et al. (1976).

For the frictional damping coefficient Cf , the semi-empirical value of Cf ¼ 0:0125 is used (Hannoyer and Paı̈doussis,

1978; Paı̈doussis, 2004).

Finally, it is noted that dissipation also occurs due to internal friction in the material of the tubular beam. This may

be taken into account by assuming that it is entirely a hysteretic effect, thus considering the Young’s modulus to be

complex: Eð1þ miÞ, where m51. Alternatively, it could be represented by a viscoelastic model, e.g. replacing the flexural

force EIðq4w=qx4Þ in Eq. (5) by ½E þ Enðq=qtÞ�Iðq4w=qx4Þ. However, for the problem at hand, as the viscous damping

due to the surrounding fluid is quite large, this form of dissipation will be neglected.
2.2.4. The equation of motion

Using relations (8), (10) and (11), one may write, correctly to the first order (Fig. 3),

�Fet � Fen
qw

qx
¼ �FL þ

q
qx
ðAopoÞ � Ao

qpo

qx
, (17)

�Fen þ Fet
qw

qx
¼ w

q
qt
�Uo

q
qx

� �
rf Ao

qw

qt
�Uo

qw

qx

� �� �
� Ao

q
qx

po

qw

qx

� �
þ FN þ FL

qw

qx
, (18)

where FN and FL are given by Eqs. (15).
1In the original form of this analysis (Luu, 1983), the first term in F N reads � 1
2 Cf rf DoUo½ðqw=qtÞ �Uoðqw=qxÞ�, obtained by simply

replacing Uo for downwards flow to �Uo for upwards flow throughout. However, this is now believed to be wrong; in the final

equation, Eq. (21), it would result in negative damping for lateral motions of the system [the penultimate term in Eq. (21) would have a

minus in front of it].
2In Luu (1983), the expression for g ¼ 0 was used in the calculations, thus severely underestimating this viscous damping effect.
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The equation of motion may be obtained by substituting Eqs. (7) and (18) into Eq. (5) to give

EI
q4w

qx4
�

q
qx
ðT � Af pi þ AopoÞ

qw

qx

� �
þ FN þ FL

qw

qx
þMt

q2w

qt2

þMf
q2w

qt2
þ 2Ui

q2w

qx qt
þU2

i

q2w

qx2

� �
þ w rf Ao

q2w

qt2
� 2Uo

q2w

qx qt
þU2

o

q2w

qx2

� �
¼ 0, ð19Þ

where ðT � Af pi þ AopoÞ may be determined by substituting expressions (6), (14), (15) and (17) into (4), yielding

q
qx
ðT � Af pi þ AopoÞ þ ðMt þMf � rf AoÞg�

1

2
Cf rf DoU2

o 1þ
Do

Dh

� �
¼ 0,

which, after being integrated from x to L, becomes

ðT � Af pi þ AopoÞ ¼ ðT � Af pi þ AopoÞL þ ðMt þMf � rf AoÞgðL� xÞ

�
1

2
Cf rf DoU2

o 1þ
Do

Dh

� �
ðL� xÞ. ð20Þ

Hence, the final form of the equation of motion may now be obtained by combining Eqs. (19) and (20),

EI
q4w

qx4
þMt

q2w

qt2
þMf

q2w

qt2
þ 2Ui

q2w

qx qt
þU2

i

q2w

qx2

� �
þ wrf Ao

q2w

qt2
� 2Uo

q2w

qx qt
þU2

o

q2w

qx2

� �

� ðT � Af pi þ AopoÞL þ ðMt þMf � rf AoÞgðL� xÞ �
1

2
Cf rf DoU2

o 1þ
Do

Dh

� �
ðL� xÞ

� �
q2w

qx2

þ ðMt þMf � rf AoÞg�
1

2
Cf rf DoU2

o 1þ
Do

Dh

� �� �
qw

qx
þ

1

2
Cf rf DoUo

qw

qt
þ k

qw

qt
¼ 0. ð21Þ

The only terms yet undefined are piL and poL. Assuming a smooth transition between internal and annular flows at

the lower end of the system, one may use the simplified relationship

piL þ
1
2
rf U2

i ¼ poL þ
1
2
rf U2

o þ rf gho, (22)

where ho is the loss of head that arises due to the sudden enlargement in the flow areas from Af to Ach; this may be

expressed in the form

ho ¼
1

2g
CðUi �UoÞ

2 (23)

and we take C ¼ 1; see, e.g., Idel’chik (1986).

Substituting Eq. (23) into Eq. (22) and rearranging terms, finally gives

piL ¼ poL þ rf UoðUo �UiÞ, (24)

where poL may be calculated from expression (14) to be

poL ¼ ½rf gþ ðFL=AoÞðDo=DhÞ�L. (25)

A final word on the equation of motion just derived relates to the fact that it is for planar, two-dimensional (2-D)

motions. Yet, it is known that flutter in external axial flow manifests itself typically as an orbital 3-D motion (Paı̈doussis

et al., 2002). Also, flutter of pipes conveying fluid is often 3-D (Bajaj and Sethna, 1984). In general, since the flow at inlet

is irrotational, 3-D motions are associated with nonlinear coupling in the curvature of the oscillating cylinder, although

for external flow the fluid may acquire a rotary component by other means. In experiments, flutter begins in a plane, but

may become orbital by the time a limit-cycle motion is established. In theoretical computations, in any case, whether

one imposes 2-D motions in a 3-D model or allows 3-D motions, the critical flow velocities for instability are the same.

Hence, for the linear analysis in this paper, a 2-D model is sufficient.

2.2.5. Boundary conditions

The equation of motion (21) is subjected to the boundary conditions

wð0; tÞ ¼
qw

qx

����
x¼0

¼ 0;
q2w

qx2

����
x¼L

¼
q3w

qx3

����
x¼L

¼ 0. (26)

Of course, the assumption of zero shear at the free end is an idealized condition, effectively supposing that the fluid

redistributes itself at the bottom of the well in Fig. 2, such that it flows wholly uniformly upwards around the
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cylinder—at least prior to the onset of instability; a hemispherical shape for the bottom of the well would aid in this

respect. Once motion begins, and one has to suppose an infinitesimally small motion to assess stability, the flow ceases

being symmetric; lateral forces are generated, and possibly a shear force at the free end. This deserves being explored in

any second-generation modelling of the problem.
3. Dimensionless equation of motion and boundary conditions

Before proceeding with the analysis, it is convenient to render the system of equations nondimensional by the use of

the following dimensionless quantities:

x ¼ x=L; Z ¼ w=L; t ¼ ½EI=ðMt þMf þ rf AoÞ�
1=2t=L2,

ui ¼ ðMf =EIÞ1=2UiL; uo ¼ ðrf Ao=EIÞ1=2UoL; bo ¼ rf Ao=ðMt þMf þ rf AoÞ,

bi ¼Mf =ðMt þMf þ rf AoÞ; g ¼ ðMt þMf � rf AoÞgL3=EI ; G ¼ TLL2=EI ,

PiL ¼ piLAf L2=EI ; PoL ¼ poLAoL2=EI ; cf ¼ 4Cf =p; k ¼ kL2=½EIðMt þMf þ rf AoÞ�
1=2,

� ¼ L=Do; h ¼ Do=Dh; a ¼ Di=Do; ach ¼ Dch=Do. ð27Þ

Substituting Eqs. (27) into Eq. (21)

q4Z

qx4
þ ½1þ boðw� 1Þ�

q2Z
qt2
þ 2ðuib

1=2
i � wuob

1=2
o Þ

q2Z
qx qt

þ ðu2i þ wu2oÞ
q2Z

qx2

� G�PiL þPoLð Þ þ gð1� xÞ �
1

2
cf �u

2
oð1þ hÞð1� xÞ

� �
q2Z

qx2

þ g�
1

2
cf �u

2
oð1þ hÞ

� �
qZ
qx
þ

1

2
cf �uob1=2o

qZ
qt
þ k

qZ
qt
¼ 0. ð28Þ

The corresponding boundary conditions are

Zð0; tÞ ¼
qZ
qx
ð0; tÞ ¼ 0;

q2Z

qx2
ð1; tÞ ¼

q3Z

qx3
ð1; tÞ ¼ 0. (29)

The relation of the pressures at the free end in expression (25) may now be written as

PiL ¼ a2PoL þ auoðauo � uiÞ (30)

with PoL ¼ rf AogL3=EI þ 1
2

cf �u2oh.

As already noted, the inside and outside flow velocities are related through continuity, i.e. UiAf ¼ UoAch, which after

some manipulation may be expressed as

uo ¼
a

ða2ch � 1Þ
ui (31)

with ui and uo, the dimensionless inside and outside flow velocities, respectively, defined in Eq. (27), and ach ¼ Dch=Do.

Also, h, the ratio of the outside diameter to the hydraulic one ðDh ¼ 4Ach=StotÞ may be expressed in terms of ach as follows:

h ¼
ach þ 1

a2ch � 1

� �
. (32)

As the lower end of the tubular beam is considered to be free, any externally imposed tension must be zero ðG ¼ 0Þ.
4. Methods of solution

Two methods of solution have been used. The first is a hybrid Galerkin–Fourier method, which proved to be quite

efficient. The second is the conventional Galerkin method.

4.1. The hybrid Galerkin–Fourier method

The method is first outlined in general, for any beam or beam-like structure subjected to fluid loading, and then for

the particular problem at hand.
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We consider free motions, and we separate variables in the equation of motion by seeking solutions of the form

Zðx; tÞ ¼ CðxÞ eiot, (33)

where o is a dimensionless complex frequency. Clearly, stability or instability may be assessed accordingly as the

imaginary component of o is positive or negative. Substituting into Eq. (28) and into the four boundary conditions (29),

we obtain a set of ordinary differential equations of the form

X4
r¼0

f rðx;oÞ
drC
dxr ¼ 0, (34)

and

X3
r¼0

gj
rðoÞ

drC
dxr

� �
x¼xj

¼ 0; j ¼ 1; 2; 3; 4; x1 ¼ x2 ¼ 0; x3 ¼ x4 ¼ 1, (35)

where in this particular case the gj
rðoÞ are all equal to unity.

The solution of these equations is accomplished by a Galerkin-like method, utilizing Fourier-series admissible

functions (Hannoyer, 1972; see also Paı̈doussis, 2004, pp. 900–901). The periodicity of the series must be greater than

unity, in order to satisfy the boundary conditions at x ¼ 0 and x ¼ 1 and to allow for the continuity of C and its

derivatives; for convenience, a periodicity of 2 is chosen, such that

CðxÞ ¼
X1
�1

an
einpxffiffiffi

2
p ¼

X1
0

fb2n�1 sin npxþ b2n cos npxg=
ffiffiffi
2
p

, (36)

where the b are complex. Hence, Eqs. (34) and (35) may now be written as follows:

Dðx;oÞ �
X4
r¼0

f rðx;oÞ
dr

dxr ½b2n�1 sin npxþ b2n cos npx� ¼ 0, (37)

X3
r¼0

gj
rðoÞ

dr

dxr

X1
n¼0

½b2n�1 sin npxþ b2n cos npx�

( )
x¼xj

¼ 0, (38)

and we impose

Z 1

0

Dðx;oÞ sin ppxdx ¼ 0;

Z 1

0

Dðx;oÞ cos ppxdx ¼ 0; p ¼ 1; 2; . . . . (39)

Each of Eqs. (39) yields a homogeneous relation between the b; the four boundary conditions (38) are also linear and

homogeneous. Hence, all the equations may be written in the form

½AðioÞ�fbg ¼ f0g; (40)

the requirement for nontriviality yields a vanishing determinant, from which the values of o may be obtained.

For the particular problem at hand, Eqs. (34) and (35) become

ð1þ mÞ
d4C

dx4
þ u2

i þ wu2o � ðG�PiL þPoLÞ � gð1� xÞ þ
1

2
cf �u

2
oð1þ hÞð1� xÞ

� �
d2C

dx2

þ g�
1

2
cf �u

2
oð1þ hÞ þ 2ioðui b

1=2
i � wuob

1=2
o Þ

� �
dC
dx

þ io
1

2
cf �uob

1=2
o þ k

� �
� o2ð1þ wbo � boÞ

� �
C ¼ 0, ð41Þ

Cð0Þ ¼
dC
dx
ð0Þ ¼ 0;

d2C

dx2
ð1Þ ¼

d3C

dx3
ð1Þ ¼ 0. (42)
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Then, the particular forms of Eqs. (37) and (38) follow directly. For example, Eq. (38) becomes

Cð0Þ ¼
X1
n¼0

1ffiffiffi
2
p fb2n�1 sin npxþ b2n cos npxgx¼0 ¼ 0,

dC
dx
ð0Þ ¼

d

dx

X1
n¼0

1ffiffiffi
2
p fb2n�1 sin npxþ b2n cos npxg

" #
x¼0

¼ 0,

d2C

dx2
ð1Þ ¼

d2

dx2
X1
n¼0

1ffiffiffi
2
p fb2n�1 sin npxþ b2n cos npxg

" #
x¼1

¼ 0,

d3C

dx3
ð1Þ ¼

d3

dx3
X1
n¼0

1ffiffiffi
2
p fb2n�1 sin npxþ b2n cos npxg

" #
x¼1

¼ 0. ð43Þ

The particular forms of Eqs. (39) and (40) are now rather obvious. They will not be given here explicitly, for brevity,

but may be found in Luu (1983).

Convergence, for the results to be discussed in the next section, was found to be fast: the results with n ¼ 10 and 11

differed by less than 1.3%.
4.2. The conventional Galerkin method

This method being very well known, there is no need to elaborate it; refer to Paı̈doussis (1998, Section 2.1.3), for

example. In this case the cantilever beam eigenfunctions were used as comparison functions.
4.3. Comparison of the two methods of solution

It is of interest that 40 or more comparison functions were necessary to achieve convergence for the drill-string-like

system in the case of the conventional Galerkin method.3 This is because the system eigenfunctions in this case are not

very much like those of the cantilever beam, mainly because of the very large gravity effect ½g�Oð104Þ�. For the bench-
top type system, however, convergence was achieved with only 10 comparison functions. As mentioned in Section 4.1,

the Fourier–Galerkin method was considerably more efficient, with convergence being achieved with only 11 terms for

the drill-string-like system.

Finally, it should be mentioned that the results obtained by the two methods were found to be identical to within 5%

for the lowest two modes, which provides added confidence in their validity.
5. Typical results

5.1. The drill-string-like system used in the calculations

The system considered is a very slender system, with a ¼ 0:9, � ¼ 2� 103, b0 ¼ 0:303, bi ¼ 0:245, g ¼ 11:85� 103. If

this were a drilling system, these dimensionless parameters could correspond to the following dimensional quantities:

Do ¼ 0:50m, Di ¼ 0:45m, L ¼ 1000m, E ¼ 200� 109 N=m2, rt ¼ 7:83� 103 kg=m3, rf ¼ 998kg=m3.

As mentioned earlier, the viscous coefficient Cf (due to the external axial flow) is assigned the value of Cf ¼ 0:0125.
The viscous damping coefficient k (and hence k) is calculated via Eq. (16) for the actual O in each mode and for each ui

corresponding to the computed ReðoÞ, iteratively if need be. This means a different set of calculations for each mode;

depending on the variability of ReðoÞ with ui, this could also mean a separate set of calculations for each ui.

Finally, it is useful to note that, for the hypothetical drilling system considered, ui and Ui (m/s) are related via

ui ¼ 0:867Ui. (44)
3In the calculations for ach ¼ 20 involving high ui, discussed in Section 5.2, it was found that more than 80 comparison functions

were necessary.
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5.2. Dynamics of the drill-string-like system and the effect of annular width

Here, it is of interest to discuss the effects on system stability of the internal and external axial flows, by varying ui

and hence uo, and of the degree of narrowness of the annular region. Although the effect of small internal flow (i.e., ui

slightly larger than zero) is to damp the motion (Gregory and Paı̈doussis, 1966a, b; Paı̈doussis, 1970, 1998), the reverse

external axial flow, by analogy to reverse internal flow, has the tendency to destabilize the system even for low uo

(Paı̈doussis et al., 2005); these qualitative aspects of the dynamics will be discussed further in Section 6. Here, the

relative effect of ui; uo and the confinement of the outer annular region on the stability of the system can most

conveniently be examined by varying just the system parameter ach ð� Dch=DoÞ. A specific value of ach defines clearly

the confinement of the outside annular region and hence determines the importance of the outside axial flow uo with

respect to the internal flow ui (by means of Eq. (31)).

First, let us analyse the dynamics of the system with ach ¼ 20. For this geometrical arrangement, the external axial

flow uo is three orders of magnitude smaller than the internal flow ui conveyed downwards in the tubular beam. It has

been verified that the dynamical behaviour of the system with ach ¼ 20 is sensibly the same as that of a system with

ach ¼ 2� 103 (where uo is seven orders of magnitude smaller than ui). Thus, for ach ¼ 20, the effect of the outside axial

flow is negligible, as compared with the internal flow; hence, one can expect that the internal downward flow will

dominate and will stabilize the system for small values of ui.
4 In Fig. 6, the calculations have been carried out for the

first three modes. Due to the viscous damping effect, the imaginary parts of the eigenfrequency oj ; ImðojÞ, are greater

than zero at ui ¼ 0. As ui is increased from zero, theImðojÞ are increased, further stabilizing the system. Here, since the

value of g, which is nonzero for vertical tubular beams, is large ðg�104Þ, a very large internal downward flow velocity

ðui�100Þ is necessary for the system to become unstable; calculations in Fig. 6 have not been taken to such high ui. It

may then be said that, for ach ¼ 20, the system is effectively stabilized by the internal flow. Flutter at ui�100

corresponds to too high a flow velocity ðUi ’ 1:15uiÞ to be of practical interest.

Calculations for ach ¼ 2 display the same dynamical behaviour, at least for uip0:6. Although in this case the external

flow velocity uo ¼ 0:3ui, so quite appreciable, the dynamics is again dominated by the internal flow, and the effect of

relatively small flow is to stabilize the system.

Next, the ratio of channel- to external-tube-diameter, ach, is reduced to ach ¼ 1:2 (i.e., Dch=Do ¼ 1:2). In this case, the

outer annular region is rather confined and the outside flow velocity uo is of the same order of magnitude as

ui ðuo ¼ 2:045 uiÞ; hence one expects the effect of external flow to be at least as important as that of internal flow. The

first three modes of the system (again with ui as the variable) are shown in the Argand diagram of Fig. 7. The loci of the

second and third modes in this case just go straight down [i.e., the ImðojÞ decrease] with increasing values of ui, but

that of the first mode remains essentially static (in the scale of this figure) in this velocity range.5 The system loses

stability in its second mode at ui ’ 2:125 at slightly lower flow velocity than the third mode (at ui ’ 2:55). Hence, for

ach ¼ 1:2, the outside axial flow velocity, uo, has a more dominant effect on the dynamics of the system than expected; it

gives the system a net destabilizing action immediately, regardless of the damping effect of the internal downward flow

ui. Therefore, from the practical viewpoint, ach ¼ 1:2 represents a strongly confined system.

Here, comparing Fig. 7 to Fig. 6, it is also noted that the natural frequencies of the system [i.e., ReðojÞ; j ¼ 1; 2; . . .]
are smaller than those for ach ¼ 20; this is due to the fact that, with greater confinement by the rigid outer channel, the

virtual (added) mass of the system is increased, and the natural frequencies of the system are thus decreased. It is further

noted that the ImðojÞ for ui ¼ 0 are larger by one order of magnitude for ach ¼ 1:2 as compared to ach ¼ 20, indicating

a sharp increase in damping due to confinement.

It is then of interest to see how the system behaves as the outside region is confined further (e.g., ach ¼ 1:1 and

uo ’ 4:28 ui). This may appear to merely be an academic exercise, as for ach ¼ 1:2 the dimensional critical flow velocity

is already very small (for a system with such a large value of g); however, this is also of practical interest for real oil

drilling systems, which may also have very small confinement in the outside annular region. As shown in Fig. 8, for a

given increment of the internal flow velocity, ui, the imaginary parts of the first three eigenfrequencies ImðojÞ; j ¼

1; 2; 3; decrease much more rapidly than for the corresponding modes in the case of ach ¼ 1:2. The instability again

occurs first in the second mode at ui ¼ 0:96 and is closely followed by the third and first modes. The real parts of the

eigenfrequencies ReðojÞ; j ¼ 1; 2; . . ., are further reduced in this case, as the ImðojÞ are further increased, at ui ¼ 0.

Clearly there are two opposing mechanisms at play as ach is reduced, in the range of ach in Figs. 7 and 8. The first is

associated with the increase in uo, which is destabilizing. The second is associated with the increase in flow-independent
4In this context, ‘‘small’’ for g ¼ 0 would be uio3 approximately (Gregory and Paı̈doussis, 1966a); for g ¼ 100; uio628 (Paı̈doussis,

1970). For the large g here under consideration, ‘‘small’’ would easily be of Oð50Þ.
5By comparing Figs. 6 and 8, it becomes clear that the evolution of the first mode in Fig. 7 represents a transition between the first-

mode locus moving up and moving down.
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Fig. 7. Argand diagram of the complex dimensionless eigenfrequencies of the drill-string-like system, oi ; i ¼ 1; 2; 3, as a function of the

dimensionless flow velocity ui for ach ¼ 1:2.

Fig. 6. Argand diagram of the complex dimensionless eigenfrequencies of the drill-string-like system, oi ; i ¼ 1; 2; 3, as a function of the

dimensionless flow velocity ui for ach ¼ 20.
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viscous damping (higher values of k) due to confinement, which is stabilizing—thus moving the ImðojÞ higher and

therefore requiring a larger ui to precipitate instability than would otherwise be the case.

The critical values of the internal downward flow velocities ui, denoted as uicf , in the case of small confinement of the

outer annular region are summarized in Table 1.

Summarizing, it may be said that, with water as the flowing fluid, it has been shown that for achp1:2, the external

upward flow in the annular region plays a dominant role and has a net destabilizing effect on the system for ui40. If no

viscous damping is taken into account (i.e., with no dissipative effects), the system would have become unstable

promptly for very small ui40. Furthermore, it is noted that by decreasing ach, the dimensionless frequencies of

oscillation, ReðojÞ, are diminished, due to the larger virtual (added) mass existing in the system; the ImðojÞ at ui ¼ 0

are correspondingly increased because of the increasing narrowing of the annulus (increasing confinement).

Additional calculations have been made with air as the flowing fluid, so as to find out whether in this case the outside

upward flow in the confined region has a smaller destabilizing effect on the dynamics of the problem. (A constant air

density of rf ¼ 1:21kg=m3 was assumed throughout, for both internal and external flows, which, it is realized, is
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Table 1

The critical flow velocities of the drill-string-like system under consideration, showing the effect of ach and of the fluid conveyed

Fluid ach uicf

First mode Second mode Third mode

Water 1.2 – 2.12 2.55

Water 1.1 1.9 0.96 1.25

Air 1.2 1.5 0.25 0.25

Fig. 8. Argand diagram of the complex dimensionless eigenfrequencies of the drill-string-like system, oi; i ¼ 1; 2; 3, as a function of the

dimensionless flow velocity ui for ach ¼ 1:1.
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unrealistic.) The results for ach ¼ 1:2 show that the behaviour of this system is similar to that obtained for water flow in

Fig. 7, but the effects are more pronounced here; the instability occurs promptly in the second mode at uicf ’ 0:25 and

almost simultaneously in the third mode. This is due to the fact that viscous damping, which is proportional to rf , is 10
3

times smaller than the corresponding one of water flow; hence, in this case, the imaginary parts of the eigenfrequencies,

ImðojÞ; j ¼ 1; 2; 3, are much closer to the neutral stability axis than the corresponding ones in Fig. 7, and instability

occurs at much lower dimensionless flow velocities in air (see Table 1). In other words, if no viscous damping were included

in the analysis, the system would become unstable for very small ui40, for both air and water flows.

Finally, before closing this section, a major assumption inherent in all the foregoing work should be discussed,

namely that there is no contact between the bottom of the pipe and the drill-bit, and hence no contact with the

‘‘ground’’. If temporary ‘‘contact’’ is assumed, the tubular beam will at that instant behave approximately as if it were

pinned (simply-supported) at the bottom. If the system ‘‘sticks’’ to the wall more permanently, say as a result to

imperfection-related bowing, its dynamics would clearly be affected, and stability would be lost by static divergence

(Paı̈doussis, 1980, 2004; Zhang and Miska, 2005).

5.3. Dynamics of a bench-top-size system

The dynamics of a bench-top-size system has also been studied—a system involving an elastomer pipe (E ¼ 2:56�
106 N=m2) with dimensions such as might be pertinent for a bench-top experiment (Do ¼ 15:7mm; Di ¼ 6:4mm and

L ¼ 443mm, in a vertical arrangement otherwise similar to that for the drill-string-like system. The corresponding

dimensionless parameters are a ¼ 0:408; � ¼ 28:2; bo ¼ 0:467; bi ¼ 0:0776; g ¼ 3:14Þ. Typical results are shown in

Fig. 9 for ach ¼ 2:0 and Fig. 10 for ach ¼ 1:2.
In Fig. 9, it is seen that the system behaves similarly to the drill-string-like system for this value of ach: the system is

stabilized in all three modes for small ui. However, in this case we begin to see the curving of the loci of the second and
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Fig. 9. Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size system, oi; i ¼ 1; 2; 3, as a function of the

dimensionless flow velocity ui for ach ¼ 2:0.

Fig. 10. Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size system, oi; i ¼ 1; 2; 3, as a function of

the dimensionless flow velocity ui for ach ¼ 1:2.

Table 2

The critical flow velocities of the bench-top-size system, showing the effect of ach and of the pipe wall thickness

Pipe ach uicf

First mode Second mode Third mode

Thick-walled ðDi ¼ 6:4mmÞ 20 –a 6.8 –a

1.2 0.39 0.89 1.55

1.1 0.27 0.61 1.03

Thin-walled ðDi ¼ 9:525mmÞ 1.2 0.25 0.60 1.0

aFor uip10, at least.

M.P. Paı̈doussis et al. / Journal of Fluids and Structures 24 (2008) 111–128124
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third modes, which eventually would cause them (or one of them, at any rate) to approach and eventually cross the

neutral axis to instability.

A further calculation with ach ¼ 20 (essentially unconfined external flow) was carried out. In that case, the second

mode reaches a maximum value of Imðo2Þ ’ 3 at ui ’ 5. It then begins to decrease and crosses the neutral axis at

uicf ¼ 6:8, at which point Reðo2Þ ¼ 14:2.
The results for ach ¼ 1:2 are shown in Fig. 10. In this case the loci of the three modes go straight down. Stability is lost

in the first mode ðui ’ 0:39Þ, and at higher flows in the second and third modes, as tabulated in Table 2.

Calculations for ach ¼ 1:1 show the same trends. Instability first occurs again in the first mode and then in the other

modes, as shown in Table 2.

Calculations were also done with a pipe of smaller wall thickness ðDo ¼ 15:7mm, Di ¼ 9:525mm; bo ¼ 0:474; bi ¼

0:174; � ¼ 28:2; g ¼ 2:377Þ and ach ¼ 1:2. The system behaves similarly to that for ach ¼ 1:2 and 1.1 and a thicker pipe,

as seen in Table 2.
6. Qualitative dynamics

The objective here is to consider the mechanisms underlying the dynamical behaviour, as computed in the foregoing,

and to compare it to that of simpler systems previously studied.

Consider first the dynamics associated with the inside flow, for convenience ignoring the presence of the dense outside

fluid and the damping associated thereto. It has been shown (Benjamin, 1961a) that the work done by the fluid on the

pipe in the course of one period of oscillation is

DW i ¼ �Mf Ui

Z T

0

qw

qt

� �2

L

þUi
qw

qt

� �
L

qw

qx

� �
L

" #
dt, (45)

where the subscript L refers to the free end of the system and i stands for ‘‘inside flow’’. It is clear that, if Ui is

sufficiently small, the first term in the square brackets predominates, and hence DW io0; thus, oscillations are damped

by the action of the flow. This is the behaviour illustrated in Fig. 6. On the other hand, for sufficiently large Ui, the

second term predominates and, if ðqw=qtÞLðqw=qxÞL is negative (which is the case in experimental observations),

DW i40 and oscillations are amplified; i.e., a flutter instability ensues (Benjamin, 1961a, b; Gregory and Paı̈doussis,

1966a, b; Paı̈doussis, 1998).

Before considering the outside flow, it is instructive to consider briefly the case of reverse inside flow (the aspirating

pipe case). In the simple-minded approach adopted by Paı̈doussis and Luu (1985), one obtains

DW i ¼Mf Ui

Z T

0

qw

qt

� �2

L

�Ui
qw

qt

� �
L

qw

qx

� �
L

" #
dt, (46)

and hence the reverse dynamics: the system is unstable by flutter at infinitesimal Ui in the absence of dissipation (which

we know is not negligible) and, if dissipation is accounted for, in any case for small Ui; then, at higher Ui, when the

second term becomes important, the system regains stability. As discussed in Paı̈doussis (1999), the main fallacy here is

that the intake flow resembles more a sink flow than a reversed jet, and this results in a depressurization vis-à-vis the

ambient at the intake. As suggested by Kuiper and Metrikine (2005), this depressurization may have been

overestimated; therefore, the expression in square brackets in Eq. (46) would have to be modified to

½ðqw=qtÞ2L � aUiðqw=qtÞLðqw=qxÞL�, with a being of the order of 1
2
. Then, Paı̈doussis et al. (2005) showed that the first

term in the expression, related to the Coriolis acceleration, vanishes completely because there is an intake force equal to

�Mf Uiðqw=qtÞ associated with the change in the lateral momentum of the flow from essentially zero just outside the

pipe to Mf Uiðqw=qtÞ just inside. This gives rise to a shear force at inlet which eliminates the first term in the square

brackets. Also, a slightly more complex interpretation of a was provided, suggesting that 0oao 1
2
. The net result is that

Eq. (46) is replaced by

DW i ¼ �aMf U2
i

Z T

0

qw

qt

� �
L

qw

qx

� �
L

dt. (47)

Details are given in Paı̈doussis et al. (2005). Clearly, if a ¼ 0 (for maximum intake depressurization), DW i ¼ 0

regardless of the value of Ui. However, for 0oao 1
2, instability may occur, depending on the magnitudes of Ui; a and

dissipation.

The purpose of this recourse to the aspirating pipe system is to consider whether the foregoing considerations have

any bearing on the reverse outside flow present in the problem at hand.
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Based on the work for a cantilevered cylinder in flow directed from the fixed towards the free end, and also for towed

cylinders in quiescent fluid, by (i) reversing the flow, (ii) assuming a blunt free end, (iii) assuming the same frictional

coefficient cf in both FN and FL as in Eqs. (15), (iv) neglecting dissipation and (v) neglecting any form drag at the

upstream end (as the flow does not directly impinge thereon), one can write (Paı̈doussis, 2004, Sections 8.3.3 and 8.9.6)

DW o ¼ rf AoUo

Z T

0

qw

qt

� �2

L

�Uo
qw

qt

� �
L

qw

qx

� �
L

" #
dt. (48)

Clearly, this suggests that, in the absence of dissipation, the effect of the outside flow is to destabilize the system, and

that when Uo is high the system would be restabilized.

In terms of the foregoing discussion on the aspirating pipe, let us consider if any modifications or corrections to Eq. (48)

are indicated. First, it is noted that the flow in this case is not accelerated axially from essentially zero (or a very small value)

to Uo as it enters the annulus; hence, the second term remains unaltered; moreover, the mean pressure changes (the head

loss) associated with flow reversal have been taken into account, albeit very approximately. Concerning the first term of

Eq. (48), it is true that there is a lateral relative velocity change from zero just upstream to qw=qt
� 	

L
at the downstream end,

but this does not translate to a shear force at x ¼ L associated with this velocity change; the fluid is ‘‘free’’, rather than being

‘‘captured’’ by the pipe at x ¼ L. This agrees with the traditional theory of axial flow over a cylinder (Hawthorne, 1961;

Paı̈doussis, 1966, 1973, 2004), finding that, unless there is a tapering end (rather than the cylinder having a square-cut end),

no shear force materializes. Nevertheless, there may be a residual effect, such that the first term in Eq. (48) should be replaced

by aðqw=qtÞ2L, with ao1. For small Uo, however, this would hardly affect the dynamics qualitatively; it would simply delay

the crossing of ImðoiÞ from positive to negative to relatively higher values of uo in Figs. 7, 8 and 10.
7. Conclusions

A theoretical model has been developed for the dynamics of a hanging tubular cantilever, centrally located in a

cylindrical container, with fluid flowing inside the cantilever, exiting from the free end, being deflected at the bottom of

the container, and thereafter flowing upwards in the annular space between cantilever and container. This configuration

was inspired by the geometry of a drill-string with a floating fluid-powered drill-bit at the lower end.

It was found that, if the annular space is wide, the dynamics is dominated by the inside flow (i.e. the flow within the

drill string), and the system loses stability by flutter. At low flow velocities, the flow damps the system, further to the

damping due to the mere presence of the fluid surrounding the cantilever.

For narrower annuli (such that the ratio of container diameter to cylinder external diameter ach is 1.2), the dynamics

is dominated by the outside (annular) flow. In this case, the flow destabilizes the system, inducing flutter at relatively

low flow velocities (just high enough to overcome the effect of the dissipative viscous forces). Thus, for the very slender

system considered in the calculations, inspired by the drilling system, if ach ¼ 1:2, the dimensionless inside flow velocity

necessary to cause flutter was found to be ui ¼ 2:12, corresponding to a flow velocity of Ui ¼ 2:44m=s; for

ach ¼ 1:1; Ui ¼ 1:11m=s, which is even smaller. However, as discussed in Section 6, the magnitude of the destabilizing

force may be overestimated due to end-effects, and the actual critical flow velocities may be somewhat larger. Therefore,

comparison with experimental values, when they become available, would be useful.

From the viewpoint of string-drill dynamics this is interesting for the following reason: it shows that, even if the drill-

bit never makes mechanical contact with the drill-string, the system is unstable by flutter, whereupon the string would

soon touch the surrounding walls and buckle; it has been shown that the critical flow velocity for buckling of a clamped-

pinned system is always inferior to that for flutter of the cantilevered one (Paı̈doussis, 1980, 1998, 2004). Of course, in a

real system, effective contact between the drill-bit and the drill-string is inevitable, and so the dynamics is more likely to

resemble those of a pipe with clamped or pinned ends (Paı̈doussis, 1998; Zhang and Miska, 2005); the contact is likely

to be intermittent, and hence, because of impacting with the channel and the switching in dynamical state (clamped-free

to clamped-pinned and back), complex dynamics would result; cf. Paı̈doussis et al. (1989).

The most interesting aspect of this work is the finding that such a system becomes unstable by single-degree-of-freedom

flutter at very small flow velocities. Thus, at flow velocities close but inferior to the critical, the system would have an

arbitrarily small damping, which commends it for MEMS/nanotechnology applications, as mentioned in the Introduction.
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